关闭 x
IT技术网
    技 采 号
    ITJS.cn - 技术改变世界
    • 实用工具
    • 菜鸟教程
    IT采购网 中国存储网 科技号 CIO智库

    IT技术网

    IT采购网
    • 首页
    • 行业资讯
    • 系统运维
      • 操作系统
        • Windows
        • Linux
        • Mac OS
      • 数据库
        • MySQL
        • Oracle
        • SQL Server
      • 网站建设
    • 人工智能
    • 半导体芯片
    • 笔记本电脑
    • 智能手机
    • 智能汽车
    • 编程语言
    IT技术网 - ITJS.CN
    首页 » SQL Server »浅析SQL Server三大算法的I/O成本

    浅析SQL Server三大算法的I/O成本

    2015-11-01 00:00:00 出处:ITJS
    分享

    1. Nested Loop Join(嵌套循环联结)

    算法:

    其思路相当的简单和直接:对于关系R的每个元组 r 将其与关系S的每个元组 s 在JOIN条件的字段上直接比较并筛选出符合条件的元组。写成伪代码就是:

    代价:

    被联结的表所处内层或外层的顺序对磁盘I/O开销有着非常重要的影响。而CPU开销相对来说影响较小,主要是元组读入内存以后(in-memory)的开销,是 O (n * m)

    对于I/O开销,根据 page-at-a-time 的前提条件,I/O cost = M + M * N,

    翻译一下就是 I/O的开销 = 读取M页的I/O开销 + M次读取N页的I/O开销。

    2. Sort-Merge Join (排序合并联结)

    Nested Loop一般在两个集合都很大的情况下效率就相当差了,而Sort-Merge在这种情况下就比它要高效不少,尤其是当两个集合的JOIN字段上都有聚集索引(clustered index)存在时,Sort-Merge性能将达到最好。

    算法:

    基本思路也很简单(复习一下数据结构中的合并排序吧),主要有两个步骤:

    a.按JOIN字段进行排序

    b.对两组已排序集合进行合并排序,从来源端各自取得数据列后加以比较(需要根据是否在JOIN字段有重复值做特殊的“分区”处理)

    代价:(主要是I/O开销)

    有两个因素左右Sort-Merge的开销:JOIN字段是否已排序 以及 JOIN字段上的重复值有多少。

    ◆最好情况下(两列都已排序且至少有一列没有重复值):O (n + m) 只需要对两个集合各扫描一遍。(这里的m,n假如都能用到索引那就更好了)

    ◆最差情况下(两列都未排序且两列上的所有值都相同):O (n * log n + m * log m + n * m) 两次排序以及一次全部元组间的笛卡尔乘积

    3. Hash Join (哈希联结)

    Hash Join在本质上类似于两列都有重复值时的Sort-Merge的处理思想——分区(patitioning)。但它们也有区别:Hash Join通过哈希来分区(每一个桶就是一个分区)而Sort-Merge通过排序来分区(每一个重复值就是一个分区)。

    值得注意的是,Hash Join与上述两种算法之间的较大区别同时也是一个较大限制是它只能应用于等值联结(equality join),这主要是由于哈希函数及其桶的确定性及无序性所导致的。

    算法:

    基本的Hash Join算法由以下两步组成:

    同nested loop,在执行计划中build input位于上方,probe input位于下方。

    hash join操作分两个阶段完成:build(构造)阶段和probe(探测)阶段。

    a.Build Input Phase: 基于JOIN字段,使用哈希函数h2为较小的S集合构建内存中(in-memory)的哈希表,相同键值的以linked list组成一个桶(bucket)

    b.Probe Input Phase: 在较大的R集合上对哈希表进行核对以完成联结。

    代价:

    值得注意的是对于大集合R的每个元组 r ,hash bucket中对应 r 的那个bucket中的每个元组都需要与 r 进行比较,这也是算法最耗时的地方所在。

    CPU开销是O (m + n * b) b是每个bucket的平均元组数量。

    总结:

    三种join方法,都是拥有两个输入,优化的基本原则:

    1.避免大数据的hash join,(hash join适合低并发情况,他占用内存和io是很大的);

    2.尽量将其转化为高效的merge join、nested loop join。可能使用的手段有表结构设计、索引调整设计、SQL优化,以及业务设计优化。

    上一篇返回首页 下一篇

    声明: 此文观点不代表本站立场;转载务必保留本文链接;版权疑问请联系我们。

    别人在看

    Destoon 模板存放规则及语法参考

    Destoon系统常量与变量

    Destoon系统目录文件结构说明

    Destoon 系统安装指南

    Destoon会员公司主页模板风格添加方法

    Destoon 二次开发入门

    Microsoft 将于 2026 年 10 月终止对 Windows 11 SE 的支持

    Windows 11 存储感知如何设置?了解Windows 11 存储感知开启的好处

    Windows 11 24H2 更新灾难:系统升级了,SSD固态盘不见了...

    小米路由器买哪款?Miwifi热门路由器型号对比分析

    IT头条

    Synology 对 Office 套件进行重大 AI 更新,增强私有云的生产力和安全性

    01:43

    StorONE 的高效平台将 Storage Guardian 数据中心占用空间减少 80%

    11:03

    年赚千亿的印度能源巨头Nayara 云服务瘫痪,被微软卡了一下脖子

    12:54

    国产6nm GPU新突破!砺算科技官宣:自研TrueGPU架构7月26日发布

    01:57

    公安部:我国在售汽车搭载的“智驾”系统都不具备“自动驾驶”功能

    02:03

    技术热点

    最全面的前端开发指南

    Windows7任务栏桌面下角的一些正在运行的图标不见了

    sql server快速删除记录方法

    SQL Server 7移动数据的6种方法

    SQL Server 2008的新压缩特性

    每个Java程序员必须知道的5个JVM命令行标志

      友情链接:
    • IT采购网
    • 科技号
    • 中国存储网
    • 存储网
    • 半导体联盟
    • 医疗软件网
    • 软件中国
    • ITbrand
    • 采购中国
    • CIO智库
    • 考研题库
    • 法务网
    • AI工具网
    • 电子芯片网
    • 安全库
    • 隐私保护
    • 版权申明
    • 联系我们
    IT技术网 版权所有 © 2020-2025,京ICP备14047533号-20,Power by OK设计网

    在上方输入关键词后,回车键 开始搜索。Esc键 取消该搜索窗口。