关闭 x
IT技术网
    技 采 号
    ITJS.cn - 技术改变世界
    • 实用工具
    • 菜鸟教程
    IT采购网 中国存储网 科技号 CIO智库

    IT技术网

    IT采购网
    • 首页
    • 行业资讯
    • 系统运维
      • 操作系统
        • Windows
        • Linux
        • Mac OS
      • 数据库
        • MySQL
        • Oracle
        • SQL Server
      • 网站建设
    • 人工智能
    • 半导体芯片
    • 笔记本电脑
    • 智能手机
    • 智能汽车
    • 编程语言
    IT技术网 - ITJS.CN
    首页 » 开发经验 »Lucene索引文件大小优化方案总结

    Lucene索引文件大小优化方案总结

    2014-11-02 00:00:00 出处:51CTO
    分享

    随着业务快速发展,基于Lucene的索引文件zip压缩后也接近了GB量级,而保持索引文件大小为一个可以接受的范围非常有必要,不仅可以提高索引传输、读取速度,还能提高索引cache效率(lucene打开索引文件的时候往往会进行缓存,比如MMapDirectory通过内存映射方式进行缓存)。

    如何降低我们的索引文件大小呢?本文进行了一些尝试,下文将一一介绍。

    1 数值数据类型索引优化

    1.1 数值类型索引问题

    lucene本质上是一个全文检索引擎而非传统的数据库系统,它基于倒排索引,非常适合处理文本,而处理数值类型却不是强项。

    举个应用场景,假设我们倒排存储的是商家,每个商家都有人均消费,用户想查询范围在500~1000这一价格区间内的商家。

    一种简单直接的想法就是,将商家人均消费当做字符串写入倒排(如图所示),在进行区间查询时:1)遍历价格分词表,将落在此区间范围内的倒排id记录表找出来;2)合并倒排id记录表。这里两个步骤都存在性能问题:1)遍历价格分词表,比较暴力,而且通过term查找倒排id记录表次数过多,性能非常差,在lucene里查询次数过多,可能会抛出Too Many Boolean Clause的Exception。2)合并倒排id记录表非常耗时,说白了这些倒排id记录表都在磁盘里。

    当然还有种思路就是将其数字长度补齐,假设所有商家的人均消费在[0,10000]这一区间内,我们存储1时写到倒排里就是00001(补齐为5位),由于分词表会按照字符串排序好,因此我们不必遍历价格分词表,通过二分查找能快速找到在某一区间范围内的倒排id记录表,但这里同样未能解决查询次数过多、合并倒排id记录表次数过多的问题。此外怎样补齐也是问题,补齐太多浪费空间,补齐太少存储不了太大范围值。

    1.2 lucene解决方法

    为解决这一问题, Schindler和 Diepenbroek提出了基于trie的解决方法,此方法08年发表在 Computers & Geosciences (地理信息科学sci期刊,影响因子1.9),也被lucene 2.9之后版本采用。( Schindler, U, Diepenbroek, M, 2008. Generic XML-based Framework for Metadata Portals. Computers & Geosciences 34 (12),论文:http://epic.awi.de/17813/1/Sch2007br.pdf)

    简单来说,整数423不是直接写入倒排,而是分割成几段写入倒排,以十进制分割为例,423将被分割为423、42、4这三个term写入, 本质上这些term形成了trie树(如图所示)。

    如何查询呢?假设大家要查询[422, 642]这一区间范围的doc,首先在树的最底层找到第一个比422大的值,即423,之后查找423的右兄弟节点,发现没有便找其父节点的右兄弟(找到44),对于642也是,找其左兄弟节点(641),之后找父节点的左兄弟(63),一直找到两者的公共节点,最终找出423、44、5、63、641、642这6个term即可。通过这种方法,原先需要查询423、445、446、448、521、522、632、633、634、641、642这11次term对应的倒排id列表,并合并这11个term对应的倒排id列表,现在仅需要查询423、44、5、63、641、642这6个term对应的倒排id列表并合并,大大降低了查询次数以及合并次数,尤其是查询区间范围较大时效果更为明显。

    这种优化方法本质上是一种以空间换时间的方法,可以看到term数目将增大许多。

    在实际操作中,lucene将数字转换成2进制来处理,而且实际上这颗trie树也无需保存数据结构,传统trie一个节点会有指向孩子节点的指针, 同时会有指向父节点的指针,而在这里只要知道一个节点,其父节点、右兄弟节点都可以通过计算得到。此外lucene也提供了precisionstep这一字段用于设置分割长度,默认情况下int、double、float等数字类型precisionstep为4,就是按4位二进制进行分割。precisionstep长度设置得越短,分割的term越多,大范围查询速度也越快,precisionstep设置得越长,极端情况下设置为无穷大,那么不会进行trie分割,范围查询也没有优化效果,precisionstep长度需要结合自身业务进行优化。

    1.3 索引文件大小优化方案

    我们的应用中很多field都是数值类型,比如id、avescore(评价分)、price(价格)等等,但是用于区间范围查询的数值类型非常少,大部分都是直接查询或者为进行排序使用。

    因此优化方法非常简单,将不需要使用范围查询的数字字段设置precisionstep为Intger.max,这样数字写入倒排仅存一个term,能极大降低term数量。

    public final class CustomFieldType {
        public static final FieldType INT_TYPE_NOT_STORED_NO_TIRE = new FieldType();
        static {
            INT_TYPE_NOT_STORED_NO_TIRE.setIndexed(true);
            INT_TYPE_NOT_STORED_NO_TIRE.setTokenized(true);
            INT_TYPE_NOT_STORED_NO_TIRE.setOmitNorms(true);
            INT_TYPE_NOT_STORED_NO_TIRE.setIndexOptions(FieldInfo.IndexOptions.DOCS_ONLY);
            INT_TYPE_NOT_STORED_NO_TIRE.setNumericType(FieldType.NumericType.INT);
            INT_TYPE_NOT_STORED_NO_TIRE.setNumericPrecisionStep(Integer.MAX_VALUE);
            INT_TYPE_NOT_STORED_NO_TIRE.freeze();
        }
    }
    doc.add(new IntField("price", price, CustomFieldType.INT_TYPE_NOT_STORED_NO_TIRE));//人均消费

    1.4 效果

    优化之后效果明显,索引压缩包大小直接减少了一倍。

    2 空间数据类型索引优化

    2.1 地理数据索引问题

    还是一样的话,lucene基于倒排索引,非常适合文本,而对于空间类型数据却不是强项。

    举个应用场景,每一个商家都有唯一的经纬度坐标(x, y),用户想筛选附近5千米的商家。

    一种直观的想法是将经度x、维度y分别当做两个数值类型字段写到倒排里,然后查询的时候遍历所有的商家,计算与用户的距离,并保留小于5千米的商家。这种方法缺点很明显:1)需要遍历所有的商家,非常暴力;2)此外球面距离计算非涉及到大量的三角函数计算,效率较低。

    简单的优化方法使用矩形框对这些商家进行过滤,之后对过滤后的商家进行距离计算,保留小于5千米的商家,这种方法尽管极大降低了计算量,但还是需要遍历所有的商家。

    2.2 lucene解决方法

    lucene采用geohash的方法对经纬度进行编码(geohash介绍参见:GeoHash)。简单描述下,geohash对空间不断进行划分并对每一个划分子空间进行编码,比如我们整个北京地区被编码为“w”,那么再对北京一分为4,某一子空间编码为“WX”,对“WX”子空间再进行划分,对各个子空间再进行标识,例如“WX4”(简单可以这么理解)。

    那么一个经纬度(x,y)怎样写入到倒排索引呢?假设某一经纬度落在“WX4”子空间内,那么经纬度将以“W”、“WX”、“WX4”这三个term写入到倒排。

    如何进行附近查询呢?首先将我们附近5km划分一个个格子,每个格子有geohash的编码,将这些编码当做查询term,去倒排查询即可,比如附近5km的geohash格子对应的编码是“WX4”,那么直接就能将落在此空间范围的商家找出。

    2.3 索引文件大小优化方案

    上述方法本质上也是一种以空间换时间的方法,比如一个经纬度(x,y),只有两个字段,但是以geohash进行编码将产生许多term并写入倒排。

    lucene默认最长的geohash长度为24,也就是一个经纬度将以24个字符串的形式来写入到倒排中。最初采用的geohash长度为11,但实际上针对我们的需求,geohash长度为9的时候已经足够满足我们的需求(geohash长度为9大约代表了5*4米的格子)。

    下表表示geohash长度对应的精度,摘自维基百科:http://en.wikipedia.org/wiki/Geohash

    geohash length lat bits lng bits lat error lng error km error
    1 2 3 ±23 ±23 ±2500
    2 5 5 ± 2.8 ± 5.6 ±630
    3 7 8 ± 0.70 ± 0.7 ±78
    4 10 10 ± 0.087 ± 0.18 ±20
    5 12 13 ± 0.022 ± 0.022 ±2.4
    6 15 15 ± 0.0027 ± 0.0055 ±0.61
    7 17 18 ±0.00068 ±0.00068 ±0.076
    8 20 20 ±0.000085 ±0.00017 ±0.019
     private void spatialInit() {
             this.ctx = SpatialContext.GEO; // 选择geo表示经纬度坐标,会按照球面计算距离,否则是平面欧式距离
             int maxLevels = 9; // geohash长度为9表示5*5米的格子,长度过长会造成查询匹配开销
             SpatialPrefixTree grid = new GeohashPrefixTree(ctx, maxLevels); // geohash字符串匹配树
             this.strategy = new RecursivePrefixTreeStrategy(grid, "poi"); // 递归匹配
         }

    2.4 效果

    此优化效果结果未做记录,不过经纬度geohash编码占据了term数量的25%,而我们又将geohash长度从11减少到9(降低18%),相当于整个term数量降低了25%*18%=4.5%。

    3 只索引不存储

    上面两种方法本质上通过减少term数量来减少索引文件大小,下面的方法走的是另一种方式。

    从lucene查出一堆docid之后,需要通过docid找出相应的document,并找出里面一些需要的字段,例如id,人均消费等等,然后返回给客户端。但实际上我们只需要获取id,通过这些id再去请求DB/Cache获取额外的字段。

    因此优化方法是只存储id等必须的字段,对于大部分字段我们只索引而不存储,通过这种方法,索引压缩文件降低了10%左右。

    1 doc.add(new StringField(“price”, each, Field.Store.NO));

    4 小结

    本文基于lucene的一些基础原理以及自身业务,对索引文件大小进行了优化,使得索引文件大小下降了一半多。

    上一篇返回首页

    声明: 此文观点不代表本站立场;转载务必保留本文链接;版权疑问请联系我们。

    别人在看

    电脑屏幕不小心竖起来了?别慌,快捷键搞定

    Destoon 模板存放规则及语法参考

    Destoon系统常量与变量

    Destoon系统目录文件结构说明

    Destoon 系统安装指南

    Destoon会员公司主页模板风格添加方法

    Destoon 二次开发入门

    Microsoft 将于 2026 年 10 月终止对 Windows 11 SE 的支持

    Windows 11 存储感知如何设置?了解Windows 11 存储感知开启的好处

    Windows 11 24H2 更新灾难:系统升级了,SSD固态盘不见了...

    IT头条

    Synology 更新 ActiveProtect Manager 1.1 以增强企业网络弹性和合规性

    00:43

    新的 Rubrik Agent Cloud 加速了可信的企业 AI 代理部署

    00:34

    宇树科技 G1人形机器人,拉动一辆重达1.4吨的汽车

    00:21

    Cloudera 调查发现,96% 的企业已将 AI 集成到核心业务流程中,这表明 AI 已从竞争优势转变为强制性实践

    02:05

    投资者反对马斯克 1 万亿美元薪酬方案,要求重组特斯拉董事会

    01:18

    技术热点

    大型网站的 HTTPS 实践(三):基于协议和配置的优化

    ubuntu下右键菜单添加新建word、excel文档等快捷方式

    Sublime Text 简明教程

    用户定义SQL Server函数的描述

    怎么在windows 7开始菜单中添加下载选项?

    SQL Server 2016将有哪些功能改进?

      友情链接:
    • IT采购网
    • 科技号
    • 中国存储网
    • 存储网
    • 半导体联盟
    • 医疗软件网
    • 软件中国
    • ITbrand
    • 采购中国
    • CIO智库
    • 考研题库
    • 法务网
    • AI工具网
    • 电子芯片网
    • 安全库
    • 隐私保护
    • 版权申明
    • 联系我们
    IT技术网 版权所有 © 2020-2025,京ICP备14047533号-20,Power by OK设计网

    在上方输入关键词后,回车键 开始搜索。Esc键 取消该搜索窗口。