关闭 x
IT技术网
    技 采 号
    ITJS.cn - 技术改变世界
    • 实用工具
    • 菜鸟教程
    IT采购网 中国存储网 科技号 CIO智库

    IT技术网

    IT采购网
    • 首页
    • 行业资讯
    • 系统运维
      • 操作系统
        • Windows
        • Linux
        • Mac OS
      • 数据库
        • MySQL
        • Oracle
        • SQL Server
      • 网站建设
    • 人工智能
    • 半导体芯片
    • 笔记本电脑
    • 智能手机
    • 智能汽车
    • 编程语言
    IT技术网 - ITJS.CN
    首页 » .NET »连载:那些年我们一起追过的缓存写法(三)

    连载:那些年我们一起追过的缓存写法(三)

    2015-03-04 00:00:00 出处:蘑菇先生
    分享

    上次我们说了多级缓存,本章详细介绍下内存缓存该如何设计。

    一:分析设计

    假设有个项目有一定并发量,要用到多级缓存,如下:

    在实际设计一个内存缓存前,我们需要考虑的问题:

    1:内存与Redis的数据置换,尽可能在内存中提高数据命中率,减少下一级的压力。

    2:内存容量的限制,需要控制缓存数量。

    3:热点数据更新不同,需要可配置单个key过期时间。

    4:良好的缓存过期删除策略。

    5:缓存数据结构的复杂度尽可能的低。

    关于置换及命中率:我们采用LRU算法,因为它实现简单,缓存key命中率也很好。

    LRU即是:把最近最少访问的数据给淘汰掉,经常被访问到即是热点数据。

    关于LRU数据结构:因为key优先级提升和key淘汰,所以需要顺序结构。我看到大多实现,都采用链表结构、

    即:新数据插入到链表头部、被命中时的数据移动到头部。 添加复杂度O(1) 移动和获取复杂度O(N)。

    有没复杂度更低的呢? 有Dictionary,复杂度为O(1),性能最好。 那如何保证缓存的优先级提升呢?

    二:O(1)LRU实现

    我们定义个LRUCache<TValue>类,构造参数maxKeySize 来控制缓存最大数量。

    使用ConcurrentDictionary来作为我们的缓存容器,并能保证线程安全。

     public class LRUCache<TValue> : IEnumerable<KeyValuePair<string, TValue>>
        {
            private long ageToDiscard = 0;  //淘汰的年龄起点
            private long currentAge = 0;        //当前缓存最新年龄
            private int maxSize = 0;          //缓存最大容量
            private readonly ConcurrentDictionary<string, TrackValue> cache;
            public LRUCache(int maxKeySize)
            {
                cache = new ConcurrentDictionary<string, TrackValue>();
                maxSize = maxKeySize;
            }
        }

    上面定义了 ageToDiscard、currentAge 这2个自增值参数,作用是:标记缓存列表中各个key的新旧程度。

    核心实现步骤如下:

    1:每次添加key时,currentAge自增并将currentAge值分配给这个缓存值的Age,currentAge始终增加。

     public void Add(string key, TValue value)
            {
                Adjust(key);
                var result = new TrackValue(this, value);
                cache.AddOrUpdate(key, result, (k, o) => result);
            }
            public class TrackValue
            {
                public readonly TValue Value;
                public long Age;
                public TrackValue(LRUCache<TValue> lv, TValue tv)
                {
                    Age = Interlocked.Increment(ref lv.currentAge);
                    Value = tv;
                }
            }

    2:在添加时,如超过最大数量。检查字典里是否有ageToDiscard年龄的key,如没有循环自增检查,有则删除、添加成功。

    ageToDiscard+maxSize= currentAge ,这样设计就能在O(1)下保证可以淘汰旧数据,而不是使用链表移动。

    public void Adjust(string key)
            {
                while (cache.Count >= maxSize)
                {
                    long ageToDelete = Interlocked.Increment(ref ageToDiscard);
                    var toDiscard =
                          cache.FirstOrDefault(p => p.Value.Age == ageToDelete);
                    if (toDiscard.Key == null)
                        continue;
                    TrackValue old;
                    cache.TryRemove(toDiscard.Key, out old);
                }
            }

    过期删除策略

    大多数情况下,LRU算法对热点数据命中率是很高的。 但如果突然大量偶发性的数据访问,会让内存中存放大量冷数据,也就是缓存污染。

    会引起LRU无法命中热点数据,导致缓存系统命中率急剧下降。也可以使用LRU-K、2Q、MQ等变种算法来提高命中率。

    过期配置

    1:我们通过设定、最大过期时间来尽量避免冷数据常驻内存。

    2:大多数情况每个缓存的时间要求不一致的,所以在增加单个key的过期时间。

     private TimeSpan maxTime;
     public LRUCache(int maxKeySize,TimeSpan maxExpireTime){}
    
      //TrackValue增加创建时间和过期时间
     public readonly DateTime CreateTime;
     public readonly TimeSpan ExpireTime;

    删除策略

    1:关于key过期删除,最好使用定时删除了。 这样可以最快释放被占用的内存,但很明显,大量的定时器对CPU吃不消的。

    2:所以我们采用惰性删除、在获取key的时检查是否过期,过期直接删除。

    public Tuple<TrackValue, bool> CheckExpire(string key)
            {
                TrackValue result;
                if (cache.TryGetValue(key, out result))
                {
                    var age = DateTime.Now.Subtract(result.CreateTime);
                    if (age >= maxTime || age >= result.ExpireTime)
                    {
                        TrackValue old;
                        cache.TryRemove(key, out old);
                        return Tuple.Create(default(TrackValue), false);
                    }
                }
                return Tuple.Create(result, true);
            }

    3:惰性删除虽然性能最好,对于冷数据来说,还是没解决缓存污染问题。 所以我们还需定期清理。

    比如:开个线程,5分钟去遍历检查key一次。这个策略根据实际场景可配置。

    public void Inspection()
            {
                foreach (var item in this)
                {
                    CheckExpire(item.Key);
                }
            }

    惰性删除+定期删除基本能满足我们需求了。

    总结

    如果继续完善下去,就是内存数据库的雏形,类似redis。

    比如:增加删除key的通知,增加更多数据类型。 本篇也是参考了redis、Orleans的实现。

    上一篇返回首页 下一篇

    声明: 此文观点不代表本站立场;转载务必保留本文链接;版权疑问请联系我们。

    别人在看

    Destoon 模板存放规则及语法参考

    Destoon系统常量与变量

    Destoon系统目录文件结构说明

    Destoon 系统安装指南

    Destoon会员公司主页模板风格添加方法

    Destoon 二次开发入门

    Microsoft 将于 2026 年 10 月终止对 Windows 11 SE 的支持

    Windows 11 存储感知如何设置?了解Windows 11 存储感知开启的好处

    Windows 11 24H2 更新灾难:系统升级了,SSD固态盘不见了...

    小米路由器买哪款?Miwifi热门路由器型号对比分析

    IT头条

    Synology 对 Office 套件进行重大 AI 更新,增强私有云的生产力和安全性

    01:43

    StorONE 的高效平台将 Storage Guardian 数据中心占用空间减少 80%

    11:03

    年赚千亿的印度能源巨头Nayara 云服务瘫痪,被微软卡了一下脖子

    12:54

    国产6nm GPU新突破!砺算科技官宣:自研TrueGPU架构7月26日发布

    01:57

    公安部:我国在售汽车搭载的“智驾”系统都不具备“自动驾驶”功能

    02:03

    技术热点

    如何删除自带的不常用应用为windows 7减负

    MySQL中多表删除方法

    改进的二值图像像素标记算法及程序实现

    windows 7 32位系统下手动修改磁盘属性例如M盘修改为F盘

    windows 7中怎么样在家庭组互传文件

    Linux应用集成MySQL数据库访问技巧

      友情链接:
    • IT采购网
    • 科技号
    • 中国存储网
    • 存储网
    • 半导体联盟
    • 医疗软件网
    • 软件中国
    • ITbrand
    • 采购中国
    • CIO智库
    • 考研题库
    • 法务网
    • AI工具网
    • 电子芯片网
    • 安全库
    • 隐私保护
    • 版权申明
    • 联系我们
    IT技术网 版权所有 © 2020-2025,京ICP备14047533号-20,Power by OK设计网

    在上方输入关键词后,回车键 开始搜索。Esc键 取消该搜索窗口。