关闭 x
IT技术网
    技 采 号
    ITJS.cn - 技术改变世界
    • 实用工具
    • 菜鸟教程
    IT采购网 中国存储网 科技号 CIO智库

    IT技术网

    IT采购网
    • 首页
    • 行业资讯
    • 系统运维
      • 操作系统
        • Windows
        • Linux
        • Mac OS
      • 数据库
        • MySQL
        • Oracle
        • SQL Server
      • 网站建设
    • 人工智能
    • 半导体芯片
    • 笔记本电脑
    • 智能手机
    • 智能汽车
    • 编程语言
    IT技术网 - ITJS.CN
    首页 » 算法设计 »3个方面浅谈程序优化

    3个方面浅谈程序优化

    2015-03-27 00:00:00 出处:ImportNew
    分享

    当初在学校实验室的时候,常常写一个算法,让程序跑着四处去晃荡一下回来,结果也就出来了。可工作后,算法效率似乎重要多了,毕竟得真枪实弹放到产品中,卖给客户的;很多时候,还要搞到嵌入式设备里实时地跑,这么一来真是压力山大了~~~。这期间,对于程序优化也算略知皮毛,下面就针对这个问题讲讲。

    首先说明一下,这里说的程序优化是指程序效率的优化。一般来说,程序优化主要是以下三个步骤:

    1.算法优化

    2.代码优化

    3.指令优化

    算法优化

    算法上的优化是必须首要考虑的,也是最重要的一步。一般我们需要分析算法的时间复杂度,即处理时间与输入数据规模的一个量级关系,一个优秀的算法可以将算法复杂度降低若干量级,那么同样的实现,其平均耗时一般会比其他复杂度高的算法少(这里不代表任意输入都更快)。

    比如说排序算法,快速排序的时间复杂度为O(nlogn),而插入排序的时间复杂度为O(n*n),那么在统计意义下,快速排序会比插入排序快,而且随着输入序列长度n的增加,两者耗时相差会越来越大。但是,如果输入数据本身就已经是升序(或降序),那么实际运行下来,快速排序会更慢。

    因此,实现同样的功能,优先选择时间复杂度低的算法。比如对图像进行二维可分的高斯卷积,图像尺寸为MxN,卷积核尺寸为PxQ,那么

    直接按卷积的定义计算,时间复杂度为O(MNPQ)

    如果使用2个一维卷积计算,则时间复杂度为O(MN(P+Q))

    使用2个一位卷积+FFT来实现,时间复杂度为O(MNlogMN)

    如果采用高斯滤波的递归实现,时间复杂度为O(MN)(参见paper:Recursive implementation of the Gaussian filter,源码在GIMP中有)

    很显然,上面4种算法的效率是逐步提高的。一般情况下,自然会选择最后一种来实现。

    还有一种情况,算法本身比较复杂,其时间复杂度难以降低,而其效率又不满足要求。这个时候就需要自己好好地理解算法,做些修改了。一种是保持算法效果来提升效率,另一种是舍弃部分效果来换取一定的效率,具体做法得根据实际情况操作。

    代码优化

    代码优化一般需要与算法优化同步进行,代码优化主要是涉及到具体的编码技巧。同样的算法与功能,不同的写法也可能让程序效率差异巨大。一般而言,代码优化主要是针对循环结构进行分析处理,目前想到的几条原则是:

    a.避免循环内部的乘(除)法以及冗余计算

    这一原则是能把运算放在循环外的尽量提出去放在外部,循环内部不必要的乘除法可使用加法来替代等。如下面的例子,灰度图像数据存在BYTE Img[MxN]的一个数组中,对其子块  (R1至R2行,C1到C2列)像素灰度求和,简单粗暴的写法是:

    1 int sum = 0; 
    2 for(int i = R1; i < R2; i++)
    3 {
    4     for(int j = C1; j < C2; j++)
    5     {
    6         sum += Image[i * N + j];
    7     }
    8 }

    但另一种写法:

    1 int sum = 0;
    2 BYTE *pTemp = Image + R1 * N;
    3 for(int i = R1; i < R2; i++, pTemp += N)
    4 {
    5     for(int j = C1; j < C2; j++)
    6     {
    7         sum += pTemp[j];
    8     }
    9 }

    可以分析一下两种写法的运算次数,假设R=R2-R1,C=C2-C1,前面一种写法i++执行了R次,j++和sum+=…这句执行了RC次,则总执行次数为3RC+R次加法,RC次乘法;同  样地可以分析后面一种写法执行了2RC+2R+1次加法,1次乘法。性能孰好孰坏显然可知。

    b.避免循环内部有过多依赖和跳转,使cpu能流水起来

    关于CPU流水线技术可google/baidu,循环结构内部计算或逻辑过于复杂,将导致cpu不能流水,那这个循环就相当于拆成了n段重复代码的效率。

    另外ii值是衡量循环结构的一个重要指标,ii值是指执行完1次循环所需的指令数,ii值越小,程序执行耗时越短。下图是关于cpu流水的简单示意图:

    简单而不严谨地说,cpu流水技术可以使得循环在一定程度上并行,即上次循环未完成时即可处理本次循环,这样总耗时自然也会降低。

    先看下面一段代码:

    1 for(int i = 0; i < N; i++)
    2 {
    3     if(i < 100) a[i] += 5;
    4     else if(i < 200) a[i] += 10;
    5     else a[i] += 20;
    6 }

    这段代码实现的功能很简单,对数组a的不同元素累加一个不同的值,但是在循环内部有3个分支需要每次判断,效率太低,有可能不能流水;可以改写为3个循环,这样循环内部就不  用进行判断,这样虽然代码量增多了,但当数组规模很大(N很大)时,其效率能有相当的优势。改写的代码为:

     1 for(int i = 0; i < 100; i++)
     2 {
     3     a[i] += 5;        
     4 }
     5 for(int i = 100; i < 200; i++)
     6 {
     7     a[i] += 10;        
     8 }
     9 for(int i = 200; i < N; i++)
    10 {
    11     a[i] += 20;
    12 }

    关于循环内部的依赖,见如下一段程序:

    1 for(int i = 0; i < N; i++)
    2 {
    3     int x = f(a[i]);
    4     int y = g(x);
    5     int z = h(x,y);
    6 }

    其中f,g,h都是一个函数,可以看到这段代码中x依赖于a[i],y依赖于x,z依赖于xy,每一步计算都需要等前面的都计算完成才能进行,这样对cpu的流水结构也是相当不利的,尽  量避免此类写法。另外C语言中的restrict关键字可以修饰指针变量,即告诉编译器该指针指向的内存只有其自己会修改,这样编译器优化时就可以无所顾忌,但目前VC的编译器似乎不支  持该关键字,而在DSP上,当初使用restrict后,某些循环的效率可提升90%。

    c.定点化

    定点化的思想是将浮点运算转换为整型运算,目前在PC上我个人感觉差别还不算大,但在很多性能一般的DSP上,其作用也不可小觑。定点化的做法是将数据乘上一个很大的数后,将  所有运算转换为整数计算。例如某个乘法我只关心小数点后3位,那把数据都乘上10000后,进行整型运算的结果也就满足所需的精度了。

    d.以空间换时间

    空间换时间最经典的就是查表法了,某些计算相当耗时,但其自变量的值域是比较有限的,这样的情况可以预先计算好每个自变量对应的函数值,存在一个表格中,每次根据自变量的  值去索引对应的函数值即可。如下例:

     1 //直接计算
     2 for(int i = 0 ; i < N; i++)
     3 {
     4     double z = sin(a[i]);
     5 }
     6 
     7 //查表计算
     8 double aSinTable[360] = {0, ..., 1,...,0,...,-1,...,0};
     9 for(int i = 0 ; i < N; i++)
    10 {
    11     double z = aSinTable[a[i]];
    12 }

    后面的查表法需要额外耗一个数组double aSinTable[360]的空间,但其运行效率却快了很多很多。

    e.预分配内存

    预分配内存主要是针对需要循环处理数据的情况的。比如视频处理,每帧图像的处理都需要一定的缓存,如果每帧申请释放,则势必会降低算法效率,如下所示:

     1 //处理一帧
     2 void Process(BYTE *pimg)
     3 {
     4     malloc
     5     ...
     6     free
     7 }
     8 
     9 //循环处理一个视频
    10 for(int i = 0; i < N; i++)
    11 {
    12     BYTE *pimg = readimage();
    13     Process(pimg);
    14 }
     1 //处理一帧
     2 void Process(BYTE *pimg, BYTE *pBuffer)
     3 {
     4     ...
     5 }
     6 
     7 //循环处理一个视频
     8 malloc pBuffer
     9 for(int i = 0; i < N; i++)
    10 {
    11     BYTE *pimg = readimage();
    12     Process(pimg, pBuffer);
    13 }
    14 free

    前一段代码在每帧处理都malloc和free,而后一段代码则是有上层传入缓存,这样内部就不需每次申请和释放了。当然上面只是一个简单说明,实际情况会比这复杂得多,但整体思想  是一致的。

    指令优化

    对于经过前面算法和代码优化的程序,一般其效率已经比较不错了。对于某些特殊要求,还需要进一步降低程序耗时,那么指令优化就该上场了。指令优化一般是使用特定的指令集,可快速实现某些运算,同时指令优化的另一个核心思想是打包运算。目前PC上intel指令集有MMX,SSE和SSE2/3/4等,DSP则需要跟具体的型号相关,不同型号支持不同的指令集。intel指令集需要intel编译器才能编译,安装icc后,其中有帮助文档,有所有指令的详细说明。

    例如MMX里的指令 __m64 _mm_add_pi8(__m64 m1, __m64 m2),是将m1和m2中8个8bit的数对应相加,结果就存在返回值对应的比特段中。假设2个N数组相加,一般需要执行N个加法指令,但使用上述指令只需执行N/8个指令,因为其1个指令能处理8个数据。

    实现求2个BYTE数组的均值,即z[i]=(x[i]+y[i])/2,直接求均值和使用MMX指令实现2种方法如下程序所示:

     1 #define N 800
     2 BYTE x[N],Y[N], Z[N];
     3 inital x,y;...
     4 //直接求均值
     5 for(int i = 0; i < N; i++)
     6 {
     7     z[i] = (x[i] + y[i]) >> 1;
     8 }
     9 
    10 //使用MMX指令求均值,这里N为8的整数倍,不考虑剩余数据处理
    11 __m64 m64X, m64Y, m64Z;
    12 for(int i = 0; i < N; i+=8)
    13 {
    14     m64X = *(__m64 *)(x + i);
    15     m64Y = *(__m64 *)(y + i);
    16     m64Z = _mm_avg_pu8(m64X, m64Y);
    17     *(__m64 *)(x + i) = m64Z;
    18 }

    使用指令优化需要注意的问题有:

    a.关于值域,比如2个8bit数相加,其值可能会溢出;若能保证其不溢出,则可使用一次处理8个数据,否则,必须降低性能,使用其他指令一次处理4个数据了;

    b.剩余数据,使用打包处理的数据一般都是4、8或16的整数倍,若待处理数据长度不是其单次处理数据个数的整数倍,剩余数据需单独处理;

    补充——如何定位程序热点

    程序热点是指程序中最耗时的部分,一般程序优化工作都是优先去优化热点部分,那么如何来定位程序热点呢?

    一般而言,主要有2种方法,一种是通过观察与分析,通过分析算法,自然能知道程序热点;另一方面,观察代码结构,一般具有最大循环的地方就是热点,这也是前面那些优化手段都针对循环结构的原因。

    另一种方法就是利用工具来找程序热点。x86下可以使用vtune来定位热点,DSP下可使用ccs的profile功能定位出耗时的函数,更近一步地,通过查看编译保留的asm文件,可具体分析每个循环结构情况,了解到该循环是否能流水,循环ii值,以及制约循环ii值是由于变量的依赖还是运算量等详细信息,从而进行有针对性的优化。由于Vtune刚给卸掉,没法截图;下图是CCS编译生成的一个asm文件中一个循环的截图:

    最后提一点,某些代码使用Intel编译器编译可以比vc编译器编译出的程序快很多,我遇到过最快的可相差10倍。对于gcc编译后的效率,目前还没测试过。

    上一篇返回首页 下一篇

    声明: 此文观点不代表本站立场;转载务必保留本文链接;版权疑问请联系我们。

    别人在看

    正版 Windows 11产品密钥怎么查找/查看?

    还有3个月,微软将停止 Windows 10 的更新

    Windows 10 终止支持后,企业为何要立即升级?

    Windows 10 将于 2025年10 月终止技术支持,建议迁移到 Windows 11

    Windows 12 发布推迟,微软正全力筹备Windows 11 25H2更新

    Linux 退出 mail的命令是什么

    Linux 提醒 No space left on device,但我的空间看起来还有不少空余呢

    hiberfil.sys文件可以删除吗?了解该文件并手把手教你删除C盘的hiberfil.sys文件

    Window 10和 Windows 11哪个好?答案是:看你自己的需求

    盗版软件成公司里的“隐形炸弹”?老板们的“法务噩梦” 有救了!

    IT头条

    公安部:我国在售汽车搭载的“智驾”系统都不具备“自动驾驶”功能

    02:03

    液冷服务器概念股走强,博汇、润泽等液冷概念股票大涨

    01:17

    亚太地区的 AI 驱动型医疗保健:2025 年及以后的下一步是什么?

    16:30

    智能手机市场风云:iPhone领跑销量榜,华为缺席引争议

    15:43

    大数据算法和“老师傅”经验叠加 智慧化收储粮食尽显“科技范”

    15:17

    技术热点

    商业智能成CIO优先关注点 技术落地方显成效(1)

    用linux安装MySQL时产生问题破解

    JAVA中关于Map的九大问题

    windows 7旗舰版无法使用远程登录如何开启telnet服务

    Android View 事件分发机制详解

    MySQL用户变量的用法

      友情链接:
    • IT采购网
    • 科技号
    • 中国存储网
    • 存储网
    • 半导体联盟
    • 医疗软件网
    • 软件中国
    • ITbrand
    • 采购中国
    • CIO智库
    • 考研题库
    • 法务网
    • AI工具网
    • 电子芯片网
    • 安全库
    • 隐私保护
    • 版权申明
    • 联系我们
    IT技术网 版权所有 © 2020-2025,京ICP备14047533号-20,Power by OK设计网

    在上方输入关键词后,回车键 开始搜索。Esc键 取消该搜索窗口。